Uniform Inference for Kernel Density Estimators with Dyadic Data

Matias D. Cattaneo, Yingjie Feng, William G. Underwood

January 15, 2022

Abstract

Dyadic data is often encountered when quantities of interest are associated with the edges of a network. As such it plays an important role in statistics, econometrics and many other data science disciplines. We consider the problem of uniformly estimating a dyadic Lebesgue density function, focusing on nonparametric kernel-based estimators which take the form of U-process-like dyadic empirical processes. We provide uniform point estimation and distributional results for the dyadic kernel density estimator, giving valid and feasible procedures for robust uniform inference. Our main contributions include the minimax-optimal uniform convergence rate of the dyadic kernel density estimator, along with strong approximation results for the associated standardized t-process. A consistent variance estimator is introduced in order to obtain analogous results for the Studentized t-process, enabling the construction of provably valid and feasible uniform confidence bands for the unknown density function. A crucial feature of U-process-like dyadic empirical processes is that they may be “degenerate” at some or possibly all points in the support of the data, a property making our uniform analysis somewhat delicate. Nonetheless we show formally that our proposed methods for uniform inference remain robust to the potential presence of such unknown degenerate points. For the purpose of implementation, we discuss uniform inference procedures based on positive semi-definite covariance estimators, mean squared error optimal bandwidth selectors and robust bias-correction methods. We illustrate the empirical finite-sample performance of our robust inference methods in a simulation study. Our technical results concerning strong approximations and maximal inequalities are of potential independent interest.

Keywords: dyadic data, networks, kernel density estimation, nonparametric estimation, empirical processes, minimax estimation, strong approximation, U-processes, coupling.

1Department of Operations Research and Financial Engineering, Princeton University
2School of Economics and Management, Tsinghua University
*Corresponding author: wgu2@princeton.edu
1 Introduction

For $n \geq 2$, consider the $\frac{1}{2}n(n-1)$ observed real-valued dyadic random variables

$$W_n = (W_{ij} : 1 \leq i < j \leq n), \quad W_{ij} = W(A_i, A_j, V_{ij}),$$

where W is an unknown function, $A_n = (A_i : 1 \leq i \leq n)$ are independent and identically distributed (i.i.d.) latent random variables, and $V_n = (V_{ij} : 1 \leq i < j \leq n)$ are i.i.d. latent random variables independent of A_n. A natural interpretation of this data is as a complete undirected network on n vertices, with the latent variable A_i associated with node i and the observed variable W_{ij} associated with the edge between nodes i and j. This structural representation for the data generating process is justified by the celebrated Aldous-Hoover representation theorem for exchangeable arrays (Aldous, 1981; Hoover, 1979). Such dyadic, or graphon, data has received renewed attention in statistics, econometrics, and other data science disciplines in recent years. See Bickel and Chen (2009) and Bickel et al. (2011) for important early contributions, and Klopp and Verzelen (2019), Pensky (2019), Chiang et al. (2021), Davezies et al. (2021), Gao and Ma (2021), Graham (2020), Matsushita and Otsu (2021), and references therein, for contemporary contributions and overviews.

With the aim of estimating nonparametric density-like functions associated with W_{ij} using kernel-based methods, we study the statistical properties of a class of “local” U-process-like empirical processes based on dyadic data (cf. Einmahl and Mason, 1997, for i.i.d. data). More precisely, we investigate the properties of the stochastic process

$$w \mapsto \hat{f}_W(w) = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} k_h(W_{ij}, w),$$

(1)

where $k_h(\cdot, w)$ is a kernel-like function that can change with the n-varying bandwidth parameter $h = h(n)$ and the evaluation point $w \in \mathcal{W} \subseteq \mathbb{R}$. For each $w \in \mathcal{W}$ and with an appropriate choice of kernel function (e.g. $k_h(\cdot, w) = K((\cdot - w)/h)/h$ for w an interior point of \mathcal{W} and K some symmetric integrable kernel function), the statistic $\hat{f}_W(w)$ becomes a kernel density estimator for the Lebesgue density function

$$f_W(w) = \mathbb{E}[f_{W|AA}(w | A_i, A_j)],$$

where $f_{W|AA}(w | A_i, A_j)$ denotes the conditional Lebesgue density of W_{ij} given A_i and A_j. See Wand and Jones (1994) for a review of kernel density estimation with i.i.d. data. The estimand $f_W(w)$ is useful in applications because it characterizes the distribution of the dyadic quantity of interest and forms the basis of many other parameters. Setting $k_h(\cdot, w) = K((\cdot - w)/h)/h$, Graham et al. (2019) recently introduced the dyadic point estimator $\hat{f}_W(w)$ and studied its large sample properties pointwise in $w \in \mathcal{W} = \mathbb{R}$, while Chiang and Tan (2020) established its rate of convergence uniformly in $w \in \mathcal{W}$ for a compact interval \mathcal{W} strictly contained in the support of dyadic data W_{ij}. Chiang et al. (2021) obtained a distributional approximation of the supremum statistic $\sup_{w \in \mathcal{W}} |\hat{f}_W(w)|$ for a finite collection of design points in \mathcal{W}.

1
Allowing for a compact domain W, which may or may not coincide with the support of W_{ij}, and employing boundary-adaptive kernel-like functions $k_h(\cdot, w)$ if needed, we contribute to the emerging literature on nonparametric smoothing methods for dyadic data with two main results. Firstly, we derive the minimax rate of uniform convergence for density estimation with dyadic data and show that the kernel density estimator \hat{f}_W in (1) is minimax-optimal under appropriate conditions. Secondly, we present a complete set of uniform distributional inference results for the entire stochastic process $(\hat{f}_W(w) : w \in W)$. We then illustrate the usefulness of our main results by constructing feasible and valid confidence bands for f_W. Furthermore, our results lay the foundation for studying the uniform distributional properties of other non-/semiparametric estimators based on dyadic data.

Section 2 outlines the setup and presents the main assumptions imposed throughout the paper. We first discuss a Hoeffding-type decomposition of the U-statistic-like \hat{f}_W, which is fundamental to our subsequent analysis. In particular, (2) shows that $\hat{f}_W(w)$ decomposes into a sum of four terms $B_n(w)$, $L_n(w)$, $E_n(w)$, and $Q_n(w)$. The first term $B_n(w)$ captures the usual smoothing bias, the second term $L_n(w)$ is akin to the Hájek projection for second-order U-statistics, the third term $E_n(w)$ is a double average, and the fourth term $Q_n(w)$ is a negligible totally degenerate second-order U-process. Both L_n and E_n capture the leading stochastic fluctuations of the process, and both are known to be asymptotically distributed as Gaussian random variables pointwise in $w \in W$ (Graham et al., 2019). However, the Hájek projection term L_n will often be “degenerate” at some or possibly all evaluation points $w \in W$. Section 2 formalizes and illustrates these phenomena, highlighting the importance of accounting for the potential degeneracy of L_n in our uniform analysis of \hat{f}_W.

Section 3 studies minimax convergence rates for point estimation of f_W uniformly over W and gives precise conditions under which the kernel-based density estimator \hat{f}_W is minimax-optimal. Firstly, in Theorem 3.1 we establish the uniform rate of convergence of \hat{f}_W for f_W. This result improves upon the recent paper of Chiang and Tan (2020) by allowing for compactly supported dyadic data and generic kernel-like functions k_h (such as boundary-adaptive kernels), while also explicitly accounting for possible degeneracy of the Hájek projection term L_n at some or possibly all points $w \in W$. Secondly, in Theorem 3.2 we derive the minimax uniform convergence rate for estimating f_W, again allowing for possible degeneracy, and verify that it is achieved by the kernel-based estimator \hat{f}_W. This result appears to be new to the literature, complementing recent work on parametric moment estimation using graphon data (Gao et al., 2015; Gao and Ma, 2021), and on nonparametric kernel-based regression using dyadic data (Graham et al., 2021).

Section 4 presents a comprehensive distributional analysis of the stochastic process \hat{f}_W, uniformly in $w \in W$. Because \hat{f}_W is not asymptotically tight in general, it may not converge weakly in the space of uniformly bounded real functions supported on \mathbb{W} and equipped with the uniform norm (van der Vaart and Wellner, 1996). To circumvent this problem, we employ strong approximation methods to characterize the distributional properties of \hat{f}_W. Up to the smoothing bias term B_n and the negligible term Q_n, it is enough to consider the stochastic process $w \mapsto L_n(w) + E_n(w)$. Since L_n can be degenerate at some or possibly all points $w \in W$, and also because under some bandwidth...
choices both L_n and E_n can be of comparable order, it is crucial to analyze the joint distributional properties of L_n and E_n. To do so, we employ a carefully crafted conditioning approach where we first establish an unconditional strong approximation for L_n and a conditional-on-A_n strong approximation for E_n. We then combine these to obtain a strong approximation for $L_n + E_n$.

The stochastic process L_n is an empirical process indexed by an n-varying class of functions, depending only on the i.i.d. random variables A_n. Thus we use the celebrated Hungarian construction (Komlós et al., 1975), building on earlier ideas in Giné et al. (2004) and Giné and Nickl (2010). The resulting rate of strong approximation is optimal, and follows from a generic strong approximation result of potential independent interest in Appendix A (Lemma A.1). Our main result for L_n is given as Lemma 4.1, and makes explicit the potential presence of degenerate points.

The stochastic process E_n is an empirical process depending on the dyadic variables W_{ij} and indexed by an n-varying class of functions. When conditioning on A_n, the variables W_{ij} are independent but not necessarily identically distributed (i.n.i.d.), and thus we establish a conditional-on-A_n strong approximation for E_n based on the Yurinskii coupling (Yurinskii, 1978), leveraging a recent refinement obtained by Belloni et al. (2019, Lemma 38). This result follows from Lemma A.2 in Appendix A, a generic strong approximation result which may also be of independent interest as it gives a novel rate of strong approximation for (local) empirical processes based on i.n.i.d. data. Lemma 4.2 gives our conditional strong approximation for E_n.

Once the unconditional strong approximation for L_n and the conditional-on-A_n strong approximation for E_n are established, we show how to properly “glue” them together to deduce a final unconditional strong approximation for $L_n + E_n$ and hence also for f_W and its associated t-process. This final step requires some additional technical work. Firstly, building on our conditional strong approximation for E_n, we establish an unconditional strong approximation for E_n in Lemma 4.3. We then employ a generalization of the celebrated Vorob’ev-Berkes-Philipp theorem (Dudley, 1999) given as Lemma A.3 in Appendix A, which might also be of independent interest, to deduce a joint strong approximation for (L_n, E_n) and, in particular, for $L_n + E_n$. Putting the above together, and with some extra technical work, we obtain our main result in Theorem 4.1, which establishes a valid strong approximation for f_W and its associated t-process. This uniform inference result complements the recent contribution of Davezies et al. (2021), which is not applicable in our context because the U-process-like statistic f_W is not Donsker in general.

We illustrate the applicability of our strong approximation result for f_W and its associated t-process by constructing valid standardized confidence bands for the unknown density function f_W. Instead of relying on extreme value theory (e.g. Giné et al., 2004), we employ anti-concentration methods to deduce a pre-asymptotic coverage error rate for the confidence bands, following Chernozhukov et al. (2014a). This illustration improves on the recent work of Chiang et al. (2021), which obtained simultaneous confidence intervals for the dyadic density f_W based on a high-dimensional central limit theorem over rectangles, following the idea in Chernozhukov et al. (2017). The distributional approximation therein is applied to the Hájek projection term L_n only, whereas our main construction leading to Theorem 4.1 gives a strong approximation for the entire U-process-like f_W.
and its associated t-process, uniformly on W. As a consequence, our uniform inference theory is robust to potential unknown degeneracies in L_n by virtue of our strong approximation of $L_n + E_n$ and the use of proper standardization, delivering a “rate-adaptive” inference procedure. In the setting of dyadic density estimation, our result appears to be the first to provide confidence bands that are valid uniformly over $w \in W$ rather than over some finite collection of design points. Moreover, our results provide distributional approximations for the whole t-statistic process of \hat{f}_W, which can be useful in applications where functionals other than the supremum are of interest.

Section 5 addresses outstanding issues of implementation. Firstly, we discuss estimation of the covariance function of the Gaussian process underlying our strong approximation results. We present two estimators, one based on the plug-in method, and the other based on a positive semi-definite regularization thereof (Laurent and Rendl, 2005). We derive the uniform convergence rates for both estimators in Lemma 5.1, which we then use to justify Studentization of \hat{f}_W and a feasible simulation-based approximation of the infeasible Gaussian process underlying our strong approximation results. Secondly, we discuss integrated mean squared error (IMSE) bandwidth selection and provide a simple rule-of-thumb implementation for applications (see Wand and Jones, 1994). Thirdly, we develop feasible, valid uniform inference for f_W employing robust bias-correction methods (Calonico et al., 2018, 2022).

Section 6 reports simulation evidence for our proposed feasible robust bias-corrected confidence bands for f_W. We show that these confidence bands are robust to potential unknown degenerate points in the underlying data generating process.

Finally, the appendices collect several technical results that may be of independent interest, including two generic strong approximation theorems for empirical processes and a generalized Vorob’ev-Berkes-Philipp theorem (in Appendix A), a maximal inequality for i.n.i.d. random variables (in Appendix B), and abbreviated proofs of our main results (in Appendix C). The online supplemental appendix includes other technical and methodological results, complete proofs, and additional details omitted here to conserve space.

1.1 Notation

We use the following standard notation and conventions throughout the paper. See the supplemental appendix for more details and further references.

Norms. The total variation norm of a real-valued function g of a single real variable is defined as $\|g\|_{TV} = \sup_{n \geq 1} \sum_{i=1}^{n} |g(x_{i+1}) - g(x_i)|$.

Sets. For an integer $m \geq 0$, denote by $C^m(\mathcal{X})$ the space of all m-times continuously differentiable functions on \mathcal{X}. For $\beta > 0$ and $C > 0$, define the Hölder class on \mathcal{X}

$$\mathcal{H}^\beta_C(\mathcal{X}) = \left\{ g \in C^2(\mathcal{X}) : \max_{1 \leq r \leq 2} |g^{(r)}(x)| \leq C \text{ and } |g^{(2)}(x) - g^{(2)}(x')| \leq C|x - x'|^{\beta - 2}, \forall x, x' \in \mathcal{X} \right\}$$

where $\hat{\beta}$ denotes the largest integer which is strictly less than β. For $a \in \mathbb{R}$ and $b \geq 0$, we write $[a \pm b]$ for the interval $[a - b, a + b]$.

Inequalities. For non-negative sequences a_n and b_n, write $a_n \lesssim b_n$ or $a_n = O(b_n)$ to indicate that a_n/b_n is bounded for $n \geq 1$. Write $a_n \ll b_n$ or $a_n = o(b_n)$ if $a_n/b_n \to 0$. If $a_n \lesssim b_n \lesssim a_n$, write $a_n \asymp b_n$. For random non-negative sequences A_n and B_n, write $A_n \lesssim_P B_n$ or $A_n = O_P(B_n)$ if A_n/B_n is eventually bounded in probability. Write $A_n = o_P(A_n)$ if $A_n/B_n \to 0$ in probability.

2 Setup

We impose the following two assumptions throughout this paper.

Assumption 2.1 (Data generation)

Let $A_n = (A_i : 1 \leq i \leq n)$ be i.i.d. random variables supported on $A \subseteq \mathbb{R}$ and let $V_n = (V_{ij} : 1 \leq i < j \leq n)$ be i.i.d. random variables with a Lebesgue density f_V on \mathbb{R}, with A_n independent of V_n. Let $W_{ij} = W(A_i, A_j, V_{ij})$ and $W_n = (W_{ij} : 1 \leq i < j \leq n)$, where W is some unknown real-valued function which is symmetric in its first two arguments. Let $W \subseteq \mathbb{R}$ be a compact interval with positive Lebesgue measure $\text{Leb}(W)$. The conditional distribution of W_{ij} given A_i and A_j admits a Lebesgue density $f_{W|AA}(w \mid A_i, A_j)$. For some $C_H > 0$ and $\beta \geq 1$, $f_W \in \mathcal{H}_C^\beta(W)$ where $f_W(w) = \mathbb{E} \left[f_{W|AA}(w \mid A_i, A_j) \right]$ and $f_{W|AA}(\cdot \mid a, a') \in \mathcal{H}_C^{\beta}(W)$ for all $a, a' \in A$. Suppose $\sup_{w \in W} \|f_{W|A}(w \mid \cdot)\|_{\text{TV}} < \infty$ where $f_{W|A}(w \mid a) = \mathbb{E} \left[f_{W|AA}(w \mid A_i, a) \right]$.

In Assumption 2.1 we require the density f_W be in a β-smooth Hölder class of functions on the compact interval W. As such we cover not only distributions with everywhere-smooth densities such as the Gaussian distribution, but also those with smooth densities up to a boundary such as uniform and exponential distributions. Under Assumption 2.1, the densities $f_W, f_{W|A}$ and $f_{W|AA}$ are all uniformly bounded by $C_d := 2\sqrt{C_H} + 1/\text{Leb}(W)$.

If $W(a_1, a_2, v)$ is strictly monotonic and continuously differentiable in its third argument, we can give the conditional density of W_{ij} explicitly using the usual change-of-variables formula: with $w = W(a_1, a_2, v)$, $f_{W|AA}(w \mid a_1, a_2) = f_V(v) |\partial W(a_1, a_2, v)/\partial v|^{-1}$. However, this is not necessary for our results.

Assumption 2.2 (Kernels and bandwidth)

Let $h = h(n) > 0$ be a sequence of bandwidths satisfying $h \log n \to 0$ and $\frac{\log n}{n^r} \to 0$. For each $w \in W$, let $k_h(\cdot, w)$ be a real-valued function supported on $[w \pm h] \cap W$. For some integer $p \geq 1$, let k_h belong to a family of boundary bias-corrected kernels of order p, i.e.,

$$\int_W (s - w)^r k_h(s, w) \, ds \begin{cases} = 1 & \text{for all } w \in W \text{ if } r = 0, \\ = 0 & \text{for all } w \in W \text{ if } 1 \leq r \leq p - 1, \\ \neq 0 & \text{for some } w \in W \text{ if } r = p. \end{cases}$$

Also, for some $C_L > 0$, $k_h(s, \cdot) \in \mathcal{H}_{C_L, h^{-2}}^{1}(W)$ for all $s \in W$.

One possibility for constructing kernel functions satisfying Assumption 2.2, among many others, is to use polynomials on $[w \pm h] \cap W$ for each $w \in W$, solving a family of linear systems to find the
Suppose that Assumptions 2.1 and 2.2 hold. Then
\[B_n(w) = \mathbb{E}[\hat{f}_W(w) | A_i] - f_W(w), \]
where
\[L_n(w) = \frac{2}{n} \sum_{i=1}^{n} l_i(w), \quad E_n(w) = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} e_{ij}(w), \quad Q_n(w) = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} q_{ij}(w), \]
with
\[B_n(w) = \mathbb{E}[\hat{f}_W(w)] - f_W(w), \]
\[L_n(w) = \frac{2}{n} \sum_{i=1}^{n} l_i(w), \quad E_n(w) = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} e_{ij}(w), \quad Q_n(w) = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} q_{ij}(w), \]
where
\[l_i(w) = \mathbb{E}[k_h(W_{ij}, w) | A_i] - \mathbb{E}[k_h(W_{ij}, w)], \]
\[e_{ij}(w) = k_h(W_{ij}, w) - \mathbb{E}[k_h(W_{ij}, w) | A_i, A_j], \]
\[q_{ij}(w) = \mathbb{E}[k_h(W_{ij}, w) | A_i, A_j] - \mathbb{E}[k_h(W_{ij}, w) | A_i] - \mathbb{E}[k_h(W_{ij}, w) | A_j] + \mathbb{E}[k_h(W_{ij}, w)]. \]

The non-random term \(B_n \) captures the smoothing (or misspecification) bias, while the three stochastic processes \(L_n, E_n \) and \(Q_n \) capture the variance of the estimator. These processes are mean-zero: \(\mathbb{E}[L_n(w)] = \mathbb{E}[Q_n(w)] = \mathbb{E}[E_n(w)] = 0 \) for all \(w \in W \), and mutually orthogonal in \(L^2(\mathbb{P}) \): \(\mathbb{E}[L_n(w)Q_n(w')] = \mathbb{E}[L_n(w)E_n(w')] = \mathbb{E}[Q_n(w)E_n(w')] = 0 \) for all \(w, w' \in W \).

The stochastic process \(L_n \) is the Hájek projection of a U-process, which can (and often will) exhibit degeneracy at some or possibly all points \(w \in W \). To characterize different types of degeneracy, we introduce the following non-negative lower and upper degeneracy constants:
\[D_0^2 := \inf_{w \in W} \text{Var} [f_{W|A}(w | A_i)] \quad \text{and} \quad D_{\text{up}}^2 := \sup_{w \in W} \text{Var} [f_{W|A}(w | A_i)]. \]

The following lemma describes the order of different terms in the Hoeffding-type decomposition, explicitly accounting for potential degeneracy. For \(a, b \in \mathbb{R} \), define \(a \wedge b = \min\{a, b\} \).

Lemma 2.1 (Bias and variance)

Suppose that Assumptions 2.1 and 2.2 hold. Then
\[\sup_{w \in W} \left| B_n(w) \right| \lesssim h^{\beta \wedge \beta} \]
and

\[\mathbb{E} \left[\sup_{w \in W} |L_n(w)| \right] \lesssim \frac{D_{\text{up}}}{\sqrt{n}}, \quad \mathbb{E} \left[\sup_{w \in W} |E_n(w)| \right] \lesssim \sqrt{\frac{\log n}{n^2 h}}, \quad \mathbb{E} \left[\sup_{w \in W} |Q_n(w)| \right] \lesssim \frac{1}{n}. \]

Lemma 2.1 captures the potential total degeneracy of \(L_n \) by showing that if \(D_{\text{up}} = 0 \) then \(L_n = 0 \) everywhere on \(W \) almost surely. The following lemma captures the potential partial degeneracy of \(L_n \), where \(D_{\text{up}} > D_{\text{lo}} = 0 \). Define the covariance function of the dyadic kernel density estimator:

\[
\Sigma_n(w, w') = \mathbb{E} \left[(\hat{f}_W(w) - \mathbb{E}[\hat{f}_W(w)]) (\hat{f}_W(w') - \mathbb{E}[\hat{f}_W(w')]) \right].
\]

Lemma 2.2 (Variance bounds)

Suppose that Assumptions 2.1 and 2.2 hold. Then for all large enough \(n \),

\[\frac{D_{\text{lo}}^2}{n} + \frac{1}{n^2 h} \inf_{w \in W} f_W(w) \lesssim \inf_{w \in W} \Sigma_n(w, w) \lesssim \sup_{w \in W} \Sigma_n(w, w) \lesssim \frac{D_{\text{up}}^2}{n} + \frac{1}{n^2 h}. \]

Combining Lemmas 2.1 and 2.2, we have the following trichotomy for degeneracy of dyadic distributions based on \(D_{\text{lo}} \) and \(D_{\text{up}} \):

(i) Total degeneracy: \(D_{\text{up}} = D_{\text{lo}} = 0 \),

(ii) Partial degeneracy: \(D_{\text{up}} > D_{\text{lo}} = 0 \),

(iii) No degeneracy: \(D_{\text{lo}} > 0 \).

In the case of no degeneracy, it can be shown that \(\inf_{w \in W} \text{Var}[L_n(w)] \gtrsim n^{-1} \), while in the case of total degeneracy, \(L_n(w) = 0 \) for all \(w \in W \) almost surely. When the dyadic distribution is partially degenerate, there exists at least one point \(w \in W \) such that \(\text{Var} [f_{W|A}(w | A_i)] = 0 \) and \(\text{Var}[L_n(w)] \lesssim h n^{-1} \), and there also exists at least one point \(w' \in W \) such that \(\text{Var} [f_{W|A}(w' | A_i)] > 0 \) and \(\text{Var}[L_n(w')] \gtrsim \frac{2}{n} \text{Var} [f_{W|A}(w' | A_i)] \) for all large enough \(n \). We say \(w \) is a degenerate point if \(\text{Var} [f_{W|A}(w | A_i)] = 0 \), and otherwise say it is a non-degenerate point.

As a simple example, consider the family of dyadic distributions \(\mathbb{P}_\pi \) indexed by \(\pi = (\pi_1, \pi_2, \pi_3) \) with \(\sum_{i=1}^{3} \pi_i = 1 \) and \(\pi_i \geq 0 \), generated as follows:

\[W_{ij} = A_i A_j + V_{ij}, \]

where \(A_i \) equals \(-1\) with probability \(\pi_1 \), equals \(0 \) with probability \(\pi_2 \) and equals \(+1 \) with probability \(\pi_3 \), and \(V_{ij} \) is standard Gaussian. In line with Assumption 2.1, \(A_n \) and \(V_n \) are i.i.d. sequences independent of each other. Then, with \(\phi \) denoting the probability density function of the standard
normal distribution,
\[
\begin{align*}
f_{W|A}(w \mid A_i, A_j) &= \phi(w - A_i A_j), \\
f_{W}(w) &= \pi_1 \phi(w + A_i) + \pi_2 \phi(w) + \pi_3 \phi(w - A_i), \\
f_W(w) &= (\pi_1^2 + \pi_2) \phi(w - 1) + \pi_2 (2 - \pi_2) \phi(w) + 2\pi_1 \pi_3 \phi(w + 1).
\end{align*}
\]

Note that \(f_W(w)\) is strictly positive for all \(w \in \mathbb{R}\). Consider the following parameter choices:

(i) \(\pi = (\frac{1}{2}, 0, \frac{1}{2})\): \(P_\pi\) is degenerate at all \(w \in \mathbb{R}\),

(ii) \(\pi = (\frac{1}{4}, 0, \frac{3}{4})\): \(P_\pi\) is degenerate only at \(w = 0\),

(iii) \(\pi = (\frac{1}{5}, \frac{1}{5}, \frac{3}{5})\): \(P_\pi\) is non-degenerate for all \(w \in \mathbb{R}\).

Figure 1 demonstrates these phenomena, plotting the unconditional density \(f_W\) and the standard deviation of the conditional density \(f_{W|A}\) over \(W = [-2, 2]\) for each choice of the parameter \(\pi\).

![Figure 1: Density \(f_W\) and standard deviation of \(f_{W|A}\) for the family of distributions \(P_\pi\).](image)

Notes. Panel (a): \(\pi = (\frac{1}{2}, 0, \frac{1}{2})\), and \(P_\pi\) is degenerate for all \(w \in \mathbb{R}\). Panel (b): \(\pi = (\frac{1}{4}, 0, \frac{3}{4})\), and \(P_\pi\) is degenerate only at \(w = 0\). Panel (c): \(\pi = (\frac{1}{5}, \frac{1}{5}, \frac{3}{5})\), and \(P_\pi\) is non-degenerate for all \(w \in \mathbb{R}\).

The trichotomy of total/partial/no degeneracy is useful for understanding the distributional properties of the dyadic kernel density estimator \(\hat{f}_W(w)\). Crucially, our need for uniformity in \(w\) complicates the simpler degeneracy/no degeneracy dichotomy observed previously in the literature (Graham et al., 2019). More specifically, from a pointwise-in-\(w\) perspective, partial degeneracy causes no issues, while it is a fundamental problem when conducting inference uniformly over \(w \in W\). In this paper, we develop inference methods that are valid uniformly over \(w \in W\), regardless of the presence of partial or total degeneracy.
3 Point Estimation Results

We now study the uniform point estimation properties of the dyadic kernel density estimator \hat{f}_W. As an immediate result of Lemma 2.1, the following theorem establishes the rate of uniform convergence of \hat{f}_W.

Theorem 3.1 (Uniform convergence rate)

Suppose that Assumptions 2.1 and 2.2 hold. Then

$$\mathbb{E} \left[\sup_{w \in W} |\hat{f}_W(w) - f_W(w)| \right] \lesssim h^{p \land \beta} + \frac{D_{up}}{\sqrt{n}} + \sqrt{\frac{\log n}{n^2 h}}.$$

The constant in Theorem 3.1 depends only on W, β, C_H and the choice of kernel. We interpret this result in light of the degeneracy trichotomy.

(i) Partial or no degeneracy: $D_{up} > 0$. Any bandwidth sequence satisfying $n^{-1} \log n \lesssim h \lesssim n^{-\frac{1}{2(p \land \beta)}}$ yields

$$\mathbb{E} \left[\sup_{w \in W} |\hat{f}_W(w) - \mathbb{E}[\hat{f}_W(w)]| \right] \lesssim \frac{1}{\sqrt{n}},$$

the “parametric” bandwidth-independent rate noted by Graham et al. (2019).

(ii) Total degeneracy: $D_{up} = 0$. Minimizing the upper bound in Theorem 3.1 by setting $h \asymp \left(\frac{\log n}{n^2}\right)^{\frac{1}{2(p \land \beta)+1}}$ yields

$$\mathbb{E} \left[\sup_{w \in W} |\hat{f}_W(w) - f_W(w)| \right] \lesssim \left(\frac{\log n}{n^2}\right)^{\frac{p \land \beta}{2(p \land \beta)+1}}.$$

These results generalize Chiang and Tan (2020, Theorem 1) by allowing for compactly supported data and more general kernel-like functions $k_h(\cdot, w)$, enabling boundary-adaptive density estimation.

3.1 Minimax Optimality

We establish the minimax rate under the supremum norm for density estimation with dyadic data, which implies the minimax optimality of the kernel density estimator \hat{f}_W, regardless of the degeneracy type of the dyadic distribution.

Theorem 3.2 (Uniform minimax rate)

Fix $\beta \geq 1$ and $C_H > 0$, and take W a compact interval with positive Lebesgue measure. Define $\mathcal{P} = \mathcal{P}(W, \beta, C_H)$ as the class of dyadic distributions satisfying Assumption 2.1. Define \mathcal{P}_d as the subclass of \mathcal{P} containing only those dyadic distributions which are totally degenerate on W in the
sense that $\sup_{w \in W} \text{Var} \left[f_{W|A}(w \mid A_i) \right] = 0$. Then

$$\inf_{f_W} \sup_{P \in P} \mathbb{E}_P \left[\sup_{w \in W} |\tilde{f}_W(w) - f_W(w)| \right] \asymp \frac{1}{\sqrt{n}},$$

$$\inf_{f_W} \sup_{P \in P_d} \mathbb{E}_P \left[\sup_{w \in W} |\tilde{f}_W(w) - f_W(w)| \right] \asymp \left(\frac{\log n}{n^2} \right)^{\beta \wedge (p \wedge \beta + 1)},$$

where \tilde{f}_W is any estimator depending only on the data $W_n = (W_{ij} : 1 \leq i < j \leq n)$ distributed according to the dyadic law P. The constants underlying \asymp depend only on W, β and C_H.

Theorem 3.2 shows that the uniform convergence rate of $n^{-1/2}$ obtained in Theorem 3.1 (coming from the L_n term) is minimax-optimal in general. When attention is restricted to totally degenerate dyadic distributions, \hat{f}_W also achieves the minimax rate of uniform convergence, which is on the order of $\left(\frac{\log n}{n^2} \right)^{\beta \wedge (p \wedge \beta + 1)}$ and determined by the bias B_n and the leading variance term E_n in (2).

Combining Theorems 3.1 and 3.2, we conclude that the estimator $\tilde{f}_W(w)$ achieves the minimax-optimal rate of uniform convergence for estimating $f_W(w)$ if $h \asymp \left(\frac{\log n}{n^2} \right)^{\frac{1}{2(2^p + 2^p) + 1}}$, whether or not there are degenerate points in the underlying data generating process. This result appears to be new in the literature on nonparametric estimation with dyadic data. See Gao and Ma (2021) for a contemporaneous review.

4 Distributional Results

Next we investigate the distributional properties of the standardized t-statistic process

$$T_n(w) = \frac{\tilde{f}_W(w) - f_W(w)}{\sqrt{\Sigma_n(w, w)}}, \quad w \in \mathcal{W}.$$

The stochastic process $(T_n(w) : w \in \mathcal{W})$ is not necessarily asymptotically tight, and hence it may not converge weakly on the space of uniformly bounded real functions supported on \mathcal{W} and equipped with the uniform norm (van der Vaart and Wellner, 1996). Therefore, to approximate the distribution of the entire t-statistic process, as well as specific functionals thereof, we rely on a novel strong approximation approach outlined in this section. Our results can be used to perform valid uniform inference irrespective of the degeneracy type of the underlying dyadic distribution.

This section is largely concerned with distributional properties and thus frequently requires copies of stochastic processes. We say that X' is a copy of X if they have the same distribution, though they may be defined on different probability spaces. For succinctness of notation, we will not differentiate between a process and its copy, but further details are available in the supplemental appendix. Many of the technical details regarding the copying and embedding of stochastic processes are covered by a generalized Vorob’ev-Berkes-Philipp Theorem, which is stated and discussed in Appendix A (Lemma A.3). In particular, this theorem can be applied to random vectors or to stochastic processes indexed on a compact rectangle in \mathbb{R}^d with a.s. continuous sample paths.
4.1 Strong Approximation

By the Hoeffding-type decomposition (2) and Lemma 2.1, it suffices to consider the distributional properties of the stochastic process \((L_n(w) + E_n(w) : w \in W)\). Our approach combines the Kólmogorov-Major-Tusnády (KMT) approximation (Komlós et al., 1975) to obtain a strong approximation of \((L_n(w) : w \in W)\) with a Yurinskii approximation (Yurinskii, 1978) to obtain a conditional (on \(A_n\)) strong approximation of \((E_n(w) : w \in W)\). The latter is necessary because \((E_n(w) : w \in W)\) is akin to a local empirical process of i.n.i.d. random variables, conditional on \(A_n\), and therefore the KMT approximation is not applicable. These approximations are then carefully combined to give a final (unconditional) strong approximation for \((L_n(w) + E_n(w) : w \in W)\), and thus for \((T_n(w) : w \in W)\).

The following lemma is an application of our generic KMT approximation result for empirical processes, Lemma A.1 in Appendix A, which builds on earlier work by Giné et al. (2004) and Giné and Nickl (2010) and may be of independent interest.

Lemma 4.1 (Strong approximation of \(L_n\))

Suppose that Assumptions 2.1 and 2.2 hold. For each \(n\) there exists a mean-zero Gaussian process \(Z^L_n\) indexed on \(W\) with

\[
\mathbb{E} \left[\sup_{w \in W} \left| \sqrt{n}L_n(w) - Z^L_n(w) \right| \right] \lesssim \frac{D_{\text{up}} \log n}{\sqrt{n}},
\]

where \(Z^L_n\) has the same covariance structure as \(\sqrt{n}L_n\), i.e. \(\mathbb{E}[Z^L_n(w)Z^L_n(w')] = n\mathbb{E}[L_n(w)L_n(w')]\) for all \(w, w' \in W\).

We also show that \(Z^L_n\) has continuous trajectories, and that for any \(\delta_n \in (0, 1/2]\),

\[
\mathbb{E} \left[\sup_{|w-w'| \leq \delta_n} \left| Z^L_n(w) - Z^L_n(w') \right| \right] \lesssim D_{\text{up}} \delta_n \sqrt{\log \frac{1}{\delta_n}}.
\]

The process \(Z^L_n\) is a function only of \(A_n\) and some random noise independent of \((A_n, V_n)\). See Lemma A.1 in Appendix A for details.

The strong approximation result in Lemma 4.1 would be sufficient to develop valid and even optimal uniform inference procedures whenever (i) \(D_{\text{lo}} > 0\) (no degeneracy in \(L_n\)) and (ii) \(nh \gg \log n\) \((L_n\) is leading). In this special case, the recent Donsker-type results of Davezies et al. (2021) can be applied to analyze the limiting distribution of the stochastic process \(\tilde{f}_W\). Here, our result in Lemma 4.1 improves on the literature by providing a rate-optimal strong approximation result for \(\tilde{f}_W\), as opposed to only a weak convergence result.

However, as illustrated above, it is common in the literature to find dyadic distributions which exhibit partial or total degeneracy, making the process \(\tilde{f}_W\) non-Donsker. Thus approximating only \(L_n\) is in general insufficient for valid uniform inference, and it is necessary to capture the distributional properties of \(E_n\) as well. The following lemma is an application of our strong approximation result for empirical processes based on the Yurinskii approximation, Lemma A.2 in Appendix A, which builds on a refinement by Belloni et al. (2019) and may be of independent interest.
Lemma 4.2 (Conditional strong approximation of E^n)
Suppose that Assumptions 2.1 and 2.2 hold. For each n there exists \tilde{Z}_n^E which is a mean-zero Gaussian process conditional on A_n satisfying

$$
\mathbb{E} \left[\sup_{w \in W} \left| \sqrt{n^2 h} E_n(w) - \tilde{Z}_n^E(w) \right| \right] \lesssim \frac{(\log n)^{3/8}}{n^{1/4} h^{3/8}},
$$

where \tilde{Z}_n^E has the same conditional covariance structure as $\sqrt{n^2 h} E_n$, i.e., $\mathbb{E}[\tilde{Z}_n^E(w)\tilde{Z}_n^E(w') \mid A_n] = n^2 h \mathbb{E}[E_n(w)E_n(w') \mid A_n]$ for all $w, w' \in W$.

We also show that \tilde{Z}_n^E has continuous trajectories, and that for any $\delta_n \in (0, 1/(2h))$:

$$
\mathbb{E} \left[\sup_{|w-w'| \leq \delta_n} \left| \tilde{Z}_n^E(w) - \tilde{Z}_n^E(w') \right| \right] \lesssim \frac{\delta_n}{h} \sqrt{\frac{1}{h \delta_n}}.
$$

The process \tilde{Z}_n^E is a Gaussian process conditional on A_n but is not in general a Gaussian process unconditionally. The following lemma further constructs an unconditional Gaussian process Z_n^E that approximates \tilde{Z}_n^E.

Lemma 4.3 (Unconditional strong approximation of E_n)
Suppose that Assumptions 2.1 and 2.2 hold. For each n there exists a mean-zero Gaussian process Z_n^E satisfying

$$
\mathbb{E} \left[\sup_{w \in W} \left| Z_n^E(w) - \tilde{Z}_n^E(w) \right| \right] \lesssim \frac{(\log n)^{2/3}}{n^{1/6}},
$$

where Z_n^E is independent of A_n and has the same (unconditional) covariance structure as \tilde{Z}_n^E and $\sqrt{n^2 h} E_n$, i.e., $\mathbb{E}[Z_n^E(w)Z_n^E(w') = E[\tilde{Z}_n^E(w)\tilde{Z}_n^E(w')] = n^2 h \mathbb{E}[E_n(w)E_n(w')]$ for all $w, w' \in W$.

We also show that Z_n^E has continuous trajectories, and that for any $\delta_n \in (0, 1/(2h))$:

$$
\mathbb{E} \left[\sup_{|w-w'| \leq \delta_n} \left| Z_n^E(w) - Z_n^E(w') \right| \right] \lesssim \frac{\delta_n}{h} \sqrt{\frac{1}{h \delta_n}}.
$$

Combining Lemmas 4.2 and 4.3, we obtain a valid (unconditional) strong approximation for E_n. The resulting rate of approximation may not be optimal, due to the Yurinskii coupling, but to the best of our knowledge, it is the first in the literature for the process E_n, and hence for \hat{f}_W and its associated t-process, in the context of dyadic data. Classical strong approximation results for local empirical processes based on i.i.d. data (e.g., Giné and Nickl, 2010) are not applicable here because, in the total degeneracy case ($D_{up} = 0$), uniform inference would be entirely based on E_n, in which case Lemmas 4.2 and 4.3 offer a valid strong approximation with sufficiently fast convergence rates, allowing for optimal bandwidth choices; see Section 5 for more details. Similarly, the results in Davezies et al. (2021) are not applicable to the non-Donsker process E_n.

Now we are ready to construct the strong approximation for the t-statistic process of interest.
The previous lemmas showed that L_n is \sqrt{n}-consistent while E_n is $\sqrt{n^2h}$-consistent (pointwise in w), which showcases the importance of careful standardization, and later (in Section 5) Studentization, for the purpose of rate adaptivity associated with potential partial or total degeneracy. In other words, a fundamental challenge in developing uniform inference is that the finite-dimensional distributions of the stochastic process $L_n + E_n$, and hence those of f_W and its associated t-process, may converge at different rates at different points $w \in \mathcal{W}$. Nevertheless, the following theorem provides an inference procedure which is fully adaptive to such potential unknown degeneracy.

Theorem 4.1 (Strong approximation of T_n)

Suppose that Assumptions 2.1 and 2.2 hold and $f_W(w) > 0$ on \mathcal{W}. Then, for each n there exists a centered Gaussian process Z_n^T such that

$$
\mathbb{E} \left[\sup_{w \in \mathcal{W}} \left| T_n(w) - Z_n^T(w) \right| \right] \lesssim \frac{n^{-1} \log n + n^{-5/4}h^{-7/8}(\log n)^{3/8} + n^{-7/6}h^{-1/2}(\log n)^{2/3} + h^{p\wedge \beta}}{D_{io}/\sqrt{n} + 1/\sqrt{n^2h}},
$$

where Z_n^T has the same covariance structure as T_n, i.e. $\mathbb{E}[Z_n^T(w)Z_n^T(w')] = \mathbb{E}[T_n(w)T_n(w')]$ for all $w, w' \in \mathcal{W}$.

The first term in the numerator corresponds to the strong approximation error for L_n characterized in Lemma 4.1 and the error introduced by Q_n. The second and third terms correspond to the conditional and unconditional strong approximation errors for E_n characterized in Lemmas 4.2 and 4.3, respectively. The fourth term corresponds the smoothing bias characterized in Lemma 2.1. The denominator is the lower bound on the standard deviation $\Sigma_n(w, w)^{1/2}$ characterized in Lemma 2.2.

At one extreme, in the absence of degenerate points ($D_{io} > 0$) and if $nh^{7/2} \gtrsim 1$ up to $\log(n)$ terms, Theorem 4.1 offers a strong approximation for the t-process at the rate $\log(n)/\sqrt{n} + \sqrt{nh^{p\wedge \beta}}$, which matches the celebrated KMT approximation rate for i.i.d. data plus the additional error $\sqrt{nh^{p\wedge \beta}}$ due to the smoothing bias. Therefore, our strong approximation construction can achieve the optimal KMT rate for dyadic data generating processes with no degenerate points provided that $p \wedge \beta \geq 3.5$ (up to $\log(n)$ terms if equality holds). In other words, Theorem 4.1 establishes the first strong approximation result in the literature for the entire t-process T_n with the KMT-optimal rate $\log(n)/\sqrt{n}$ whenever a fourth-order (boundary-adaptive) kernel is used, f_W is sufficiently smooth, and there is no degeneracy ($D_{io} > 0$).

In the presence of partial or total degeneracy ($D_{io} = 0$), Theorem 4.1 offers a strong approximation for the t-process at the rate $\sqrt{h} \log n + n^{-1/4}h^{-3/8}(\log n)^{3/8} + n^{-1/6}(\log n)^{2/3} + nh^{1/2+p\wedge \beta}$. For example, if $nh^{p\wedge \beta} \lesssim \log n$, then our result can achieve a strong approximation rate of $n^{-1/7}$, up to $\log(n)$ terms. We conjecture this rate of strong approximation is not optimal due to our construction (c.f., Lemmas 4.2 and 4.3), but it is nonetheless the first in the literature for nonparametric kernel-based statistics based on dyadic data, which is also robust to the presence of (unknown) degenerate points in the underlying dyadic data generating process.
4.2 Application: Confidence Bands

To illustrate the usefulness of our main strong approximation result, Theorem 4.1, we construct standardized (infeasible) confidence bands for f_W. In the next section, we will make this inference procedure feasible by proposing a valid estimator of the covariance function Σ_n for Studentization, as well as developing simple, valid bandwidth selection and robust bias-correction methods.

For $\alpha \in (0, 1)$, let $q_{1-\alpha}$ be the quantile of $\sup_{w \in W} |Z_n^T(w)|$ satisfying

$$\mathbb{P}\left(\sup_{w \in W} |Z_n^T(w)| \leq q_{1-\alpha} \right) = 1 - \alpha.$$

The following result employs the anti-concentration idea due to Chernozhukov et al. (2014a) to deduce valid standardized confidence bands, where we approximate the quantile of the unknown finite sample distribution of $\sup_{w \in W} |T_n(w)|$ by the quantile $q_{1-\alpha}$ of $\sup_{w \in W} |Z_n^T(w)|$. Notably, it does not require weak convergence of $T_n(w)$ to a stable law. In turn this approach offers a better rate of convergence, hence improving the finite sample performance of the proposed confidence bands.

Theorem 4.2 (Infeasible uniform confidence bands)

Suppose that Assumptions 2.1 and 2.2 hold and $f_W(w) > 0$ on W. Then

$$\left| \mathbb{P}\left(f_W(w) \in \left[\hat{f}_W(w) \pm q_{1-\alpha} \sqrt{\Sigma_n(w, w)} \right] \text{ for all } w \in W \right) - (1 - \alpha) \right| \lesssim n^{-1/2}(\log n)^{3/4} + n^{-5/8}h^{-7/16}(\log n)^{7/16} + n^{-7/12}h^{-1/4}(\log n)^{7/12} + h^{p\beta/2}(\log n)^{1/4}.$$

For the coverage error rate in Theorem 4.2 to converge to zero in large samples, we need further restrictions on the bandwidth sequence, which depend on the degeneracy type of the dyadic distribution. These are summarized in the following assumption.

Assumption 4.1 (Rate restriction for uniform confidence bands)

Assume that one of the following holds:

(i) No degeneracy ($Dlo > 0$): $n^{-6/7} \log n \ll h \ll (n \log n)^{-\frac{1}{2(p\wedge \beta)}}$,

(ii) Partial or total degeneracy ($Dlo = 0$): $n^{-2/3}(\log n)^{7/3} \ll h \ll (n^2 \log n)^{-\frac{1}{2(p\wedge \beta)}}$.

By Theorem 3.1, the asymptotically minimax-optimal bandwidth choice for uniform convergence is $h \asymp (\log(n)/n^2)^{\frac{1}{4(p\wedge \beta)+1}}$. Similarly, as we show in the next section, the approximate integrated mean squared error optimal bandwidth is $h \asymp (1/n^2)^{\frac{1}{4(p\wedge \beta)+1}}$. Both bandwidth choices satisfy Assumption 4.1 only in the case of no degeneracy. The degenerate cases in Assumption 4.1(ii), which require $p \wedge \beta \geq 2$, exhibit behavior more similar to that of standard nonparametric kernel-based estimation. Hence the aforementioned optimal bandwidth choices will lead to a non-negligible smoothing bias in the distributional approximation of T_n. Different approaches are available in
the literature to address this issue, including undersmoothing or ignoring the bias (Hall and Kang, 2001), bias correction (Hall, 1992), robust bias correction (Calonico et al., 2018, 2022) and Lepski’s method (Lepski, 1992; Birgé, 2001), among other possibilities. In the next section we develop a feasible uniform inference procedure, based on robust bias-correction methods, which amounts to first selecting an optimal bandwidth for the point estimator f_M using a pth-order kernel, and then correcting bias of the point estimator while also adjusting the standardization (Studentization) when forming the t-statistic T_n. One way to implement this approach is simply using a kernel of higher order $p' > p$ to construct the confidence bands.

Importantly, regardless of the specific implementation details, Theorem 4.2 shows that any bandwidth sequence h satisfying both (i) and (ii) in Assumption 4.1 leads to valid uniform inference which is robust and adaptive to the (unknown) degeneracy type of the underlying dyadic distribution, a crucial feature in network data settings.

5 Implementation

This section is concerned with the outstanding implementation details which make our main uniform inference results feasible in applications.

5.1 Covariance function estimation

Define the following plug-in covariance function estimator of Σ_n for $w, w' \in W$,

$$\hat{\Sigma}_n(w, w') = \frac{4}{n^2} \sum_{i=1}^{n} S_i(w)S_i'(w') - \frac{4}{n^2(n-1)^2} \sum_{i<j} k_h(W_{ij}, w)k_h(W_{ij}, w') - \frac{4n - 6}{n(n-1)} \hat{f}_M(w)\hat{f}_M(w'),$$

where

$$S_i(w) = \frac{1}{n-1} \left(\sum_{j=1}^{i-1} k_h(W_{ji}, w) + \sum_{j=i+1}^{n} k_h(W_{ij}, w) \right)$$

is an estimator of $E[k_h(W_{ij}, w) \mid A_i]$. Though $\hat{\Sigma}_n(w, w')$ is consistent in an appropriate sense as shown in Lemma 5.1 below, it is not necessarily almost surely positive semi-definite. Therefore, we propose a modified covariance estimator which is guaranteed to be positive semi-definite. Specifically, consider the following optimization problem:

$$\min_{M: \mathcal{W} \times \mathcal{W} \to \mathbb{R}} \sup_{w, w' \in \mathcal{W}} \left| \frac{M(w, w') - \hat{\Sigma}_n(w, w')}{\sqrt{\hat{\Sigma}_n(w, w') + \hat{\Sigma}_n(w', w')}} \right|$$

subject to M is symmetric and positive semi-definite,

$$|M(w, w') - M(w, w'')| \leq \frac{4}{nh^3} C_k C_L |w' - w''|$$

for all $w, w', w'' \in \mathcal{W}$. (4)
Denote by \(\tilde{\Sigma}_n^+ \) any (approximately) optimal solution to (4). The following lemma establishes fast uniform convergence rates for both \(\tilde{\Sigma}_n \) and \(\tilde{\Sigma}_n^+ \). It allows us to use these estimators to construct feasible versions of \(T_n \) and its associated Gaussian approximation \(Z^T_n \) defined in Theorem 4.1.

Lemma 5.1 (Consistency of \(\tilde{\Sigma}_n \) and \(\tilde{\Sigma}_n^+ \))

Suppose that Assumptions 2.1 and 2.2 hold, and that \(nh \gtrsim \log n \) and \(f_W(w) > 0 \) on \(W \). Then

\[
\sup_{w, w' \in W} \left| \frac{\tilde{\Sigma}_n(w, w') - \Sigma_n(w, w')}{\sqrt{\tilde{\Sigma}_n(w, w) + \Sigma_n(w', w')}} \right| \lesssim \frac{\sqrt{\log n}}{n}.
\]

Also, the optimization problem (4) is a semi-definite program (SDP, Laurent and Rendl, 2005) and has an approximately optimal solution \(\tilde{\Sigma}_n^+ \) satisfying

\[
\sup_{w, w' \in W} \left| \frac{\tilde{\Sigma}_n^+(w, w') - \Sigma_n(w, w')}{\sqrt{\tilde{\Sigma}_n^+(w, w) + \Sigma_n(w', w')}} \right| \lesssim \frac{\sqrt{\log n}}{n}.
\]

For finite-size covariance matrices, the semi-definite program defining \(\tilde{\Sigma}_n^+(w, w') \) can be solved using a general-purpose SDP solver (e.g. using interior point methods, Laurent and Rendl, 2005).

5.2 Feasible confidence bands

Given a choice of the kernel order \(p \) and a bandwidth \(h \), we construct a valid confidence band that is implementable in practice. Define the Studentized \(t \)-statistic process

\[
\tilde{T}_n(w) = \frac{\tilde{f}_W(w) - f_W(w)}{\sqrt{\tilde{\Sigma}_n^+(w, w)}}, \quad w \in W.
\]

Let \(\tilde{Z}^T_n(w) \) be a process which, conditional on the data \(W_n \), is mean-zero and Gaussian, whose conditional covariance structure is

\[
E\left[\tilde{Z}^T_n(w) \tilde{Z}^T_n(w') \mid W_n \right] = \frac{\tilde{\Sigma}_n^+(w, w')}{\sqrt{\tilde{\Sigma}_n^+(w, w)\tilde{\Sigma}_n^+(w', w')}}.
\]

For \(\alpha \in (0, 1) \), let \(\tilde{q}_{1-\alpha} \) be the conditional quantile satisfying

\[
\mathbb{P}\left(\sup_{w \in W} \left| \tilde{Z}_n^T(w) \right| \leq \tilde{q}_{1-\alpha} \mid W_n \right) = 1 - \alpha,
\]

which is shown to be well-defined in the supplemental appendix. The following theorem establishes the validity of our proposed feasible confidence band for \(f_W \), which is adaptive to the unknown degeneracy type.
Theorem 5.1 (Feasible uniform confidence bands)
Suppose that Assumptions 2.1, 2.2 and 4.1 hold and \(f_W(w) > 0 \) on \(W \). Then
\[
\left| \mathbb{P} \left(f_W(w) \in \left[\hat{f}_W(w) \pm \tilde{q}_{1-\alpha} \sqrt{\hat{\Sigma}_n(w, w)} \right] \text{ for all } w \in W \right) - (1-\alpha) \right| \ll 1.
\]

Recently, Chiang et al. (2021) derived high-dimensional central limit theorems over rectangles for exchangeable arrays and applied them to construct simultaneous confidence intervals for a sequence of design points. Their inference procedure relies on the multiplier bootstrap, and the required sufficient conditions for valid inference depends on the number of design points considered. In contrast, Theorem 5.1 constructs a feasible uniform confidence band over the entire domain of inference \(W \) based on our strong approximation results for the whole \(t \)-statistic process and the covariance estimator \(\hat{\Sigma}_n \). The required rate condition specified in Assumption 4.1 does not depend on the number of design points. Furthermore, our proposed inference methods are robust to potential unknown degenerate points in the underlying dyadic data generating process.

In practice, suprema over \(W \) can be replaced by maxima over sufficiently many design points in \(W \). The conditional quantile \(\tilde{q}_{1-\alpha} \) can be estimated by Monte Carlo simulation, resampling from the Gaussian process defined by the law of \(Z_n^T | W_n \).

The bandwidth restrictions in Theorem 5.1 are the same as those required for the infeasible version given in Theorem 4.2, namely those imposed in Assumption 4.1. This follows from the fast rates of convergence obtained in Lemma 5.1, coupled with some careful technical work given in the supplemental appendix to handle the potential presence of degenerate points in the underlying dyadic data generating process (and hence also in \(\Sigma_n \) itself).

5.3 Bandwidth Selection and Robust Bias-Corrected Inference

With an eye towards applications, we propose simple methods for bandwidth selection. Our procedure begins with the optimal point estimator \(\hat{f}_W \) that minimizes the integrated mean squared error (IMSE), which we then combine with robust bias-correction ideas (Calonico et al., 2018, 2022).

Let \(\psi(w) \) be a non-negative real-valued function on \(W \), and suppose that we use a kernel of order \(p < \beta \) of the form \(k_h(s, w) = K((s-w)/h)/h \). Note that the boundary bias is not an issue from an IMSE perspective. Then, the \(\psi \)-weighted asymptotic IMSE (AIMSE) is minimized by
\[
h_{\text{AIMSE}}^* = \left(\frac{p!(p-1)!}{2} \left(\int_W f_W(w) \psi(w) \, dw \right) \left(\int_W K(w)^2 \, dw \right) \right)^{1/(2p+1)} \left(\frac{n(n-1)}{2} \right)^{-\frac{1}{2p+1}}.
\]

This is akin to the AIMSE-optimal bandwidth choice for traditional monadic kernel density estimation with a sample size of \(\frac{n(n-1)}{2} \). See, for example, Wand and Jones (1994) for a review. The choice \(h_{\text{AIMSE}}^* \) is slightly undersmoothed (up to a polynomial \(\log(n) \) factor) relative to the uniform minimax-optimal bandwidth choice discussed in Section 3, but it is much easier to implement in practice.
The choice \(h^*_\text{AIMSE} \) is an oracle estimator requiring prior knowledge of \(f_W \). In practice, many standard feasible bandwidth selection techniques can be used. For example, consider the following strategies:

(i) **Rule-of-thumb (ROT).** A popular choice of the bandwidth for kernels of order \(p = 2 \) is Silverman’s rule-of-thumb. Let \(\hat{\sigma}^2 \) and \(\text{IQR} \) be the sample variance and sample interquartile range respectively of the data \(W_n \). Then define

\[
\hat{h}_{\text{ROT}} = C(K) \left(\hat{\sigma} \wedge \frac{\text{IQR}}{1.349} \right) \left(\frac{n(n-1)}{2} \right)^{-1/5},
\]

where

\[
C(K) = \left(\frac{8\sqrt{\pi} \int K(w)^2 dw}{3 \left(\int w^2 K(w) dw \right)^2} \right)^{1/5} = \begin{cases}
2.576, & \text{triangular kernel } K(w) = (1 - |w|) \vee 0, \\
2.435, & \text{Epanechnikov kernel } K(w) = \frac{3}{4}(1 - w^2) \vee 0.
\end{cases}
\]

(ii) **Second generation direct plug-in methods (DPI).** The unknown function \(f_W \) and its derivatives can be estimated using preliminary consistent nonparametric estimators, which rely on some (approximately optimal) pilot bandwidth. These estimators are then plugged into the formula for \(h^*_\text{AIMSE} \), yielding a bandwidth estimator \(\hat{h}_{\text{DPI}} \). This approach is meant to develop consistent nonparametric bandwidth estimators in the sense that \(\hat{h}_{\text{DPI}}/h^*_\text{AIMSE} \to_{\mathbb{P}} 1 \). This procedure can be iterated to give a multi-stage DPI procedure.

(iii) **Likelihood cross-validation.** The bandwidth could also be selected by maximum likelihood cross-validation, though care must be taken to ensure that the estimator is fitted and evaluated on independent samples. For example, a “leave-one-out” regime might fit the estimator on \(W_n^{-ij} = \{ W_{i'j'} : \{i, j\} \cap \{i', j'\} = \emptyset \} \) and evaluate it at \(W_{ij} \). A “batch” version of this can be formulated by choosing some \(\mathcal{I} \subseteq \{1, \ldots, n\} \), fitting the estimator on \(W_n^{-\mathcal{I}} = \{ W_{ij} : i \notin \mathcal{I}, j \notin \mathcal{I} \} \) and evaluating it on \(W_n^\mathcal{I} = \{ W_{ij} : i \in \mathcal{I}, j \in \mathcal{I} \} \).

The AIMSE-optimal bandwidth selector \(h^*_\text{AIMSE} \asymp n^{-\frac{2}{p+1}} \) and any of its consistent feasible estimators only satisfy Assumption 4.1 in the case of no degeneracy (\(D_{lo} > 0 \)). Under partial or total degeneracy, such bandwidths are not valid due to the usual leading smoothing (or misspecification) bias that appears in the distributional approximation. To circumvent this problem and construct simple feasible uniform confidence bands for \(f_W \), we propose the following robust bias-correction approach.

Firstly, estimate the bandwidth \(h^*_\text{AIMSE} \asymp n^{-\frac{2}{p+1}} \) using a kernel of order \(p \), which leads to an AIMSE-optimal point estimator \(\hat{f}_W \) in an \(L^2(\psi) \) sense. Then use this bandwidth and a kernel of order \(p' > p \) to construct the statistic \(\hat{T}_n \) and the confidence band as detailed in Section 5.2. Importantly, both \(\hat{f}_W \) and \(\hat{\Sigma}_n \) are recomputed with the new higher-order kernel function. The change in centering is equivalent to a bias correction of the original AIMSE-optimal point estimator, while the change in scale captures the additional variability introduced by the bias correction itself.
As shown formally in Calonico et al. (2018, 2022) for the case of kernel-based density estimation with i.i.d. data, this approach leads to higher-order refinements in the distributional approximation whenever additional smoothness is available ($p' \leq \beta$). In the present dyadic setting, this procedure is valid so long as $n^{-2/3}(\log n)^{7/3} \ll n^{-\frac{2}{p+1}} \ll (n^2 \log n)^{-\frac{2}{p'+1}}$, which is equivalent to $2 \leq p < p'$. For concreteness, we recommend taking $p = 2$ and $p' = 4$, and using the rule-of-thumb bandwidth choice \hat{h}_{ROT} defined above. In particular, this approach automatically delivers a KMT-optimal strong approximation whenever there are no degeneracies in the underlying dyadic data generating process.

Our feasible robust bias-correction method based on an AIMSE-optimal dyadic kernel density point estimation for constructing feasible uniform confidence bands for f_W is summarized in Algorithm 1.

<table>
<thead>
<tr>
<th>Algorithm 1: Feasible uniform confidence bands for dyadic kernel density estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose a kernel k_h of order $p \geq 2$ satisfying Assumption 2.2.</td>
</tr>
<tr>
<td>2. Select a bandwidth $h \approx h_{\text{AIMSE}}^*$ for k_h as in Section 5.3, perhaps using $h = \hat{h}_{\text{ROT}}$.</td>
</tr>
<tr>
<td>3. Choose another kernel k'_h of order $p' > p$ satisfying Assumption 2.2.</td>
</tr>
<tr>
<td>4. For $d \geq 1$, choose a set of d distinct evaluation points W_d.</td>
</tr>
<tr>
<td>5. For each $w \in W_d$, construct the density estimate $\hat{f}_W(w)$ using k'_h as in Section 1.</td>
</tr>
<tr>
<td>6. For $w, w' \in W_d$, construct the covariance estimate $\hat{\Sigma}_n(w, w')$ using k'_h as in Section 5.1.</td>
</tr>
<tr>
<td>7. Construct the $d \times d$ positive semi-definite covariance estimate $\hat{\Sigma}_n^{+}$ as in Section 5.1.</td>
</tr>
<tr>
<td>8. For $B \geq 1$, let $(\hat{Z}_{n,r}^T : 1 \leq r \leq B)$ be i.i.d. Gaussian vectors from \hat{Z}_n^T defined in Section 5.2.</td>
</tr>
<tr>
<td>9. For $\alpha \in (0, 1)$, set $\hat{q}{1-\alpha} = \inf{q \in \mathbb{R}} { q : # { r : \max_{w \in W_d}</td>
</tr>
<tr>
<td>10. Construct $[\hat{f}W(w) \pm \hat{q}{1-\alpha} \hat{\Sigma}_n^{+}(w, w)^{1/2}]$ for each $w \in W_d$.</td>
</tr>
</tbody>
</table>

6 Simulations

We investigate the empirical finite-sample performance of the kernel density estimator with dyadic data. The family of dyadic distributions defined in Section 2.1, along with its three different parametrizations, is used to generate simulated datasets with different degeneracy types.

We use two different boundary bias-corrected Epanechnikov kernels of orders $p = 2$ and $p = 4$ respectively, on the inference domain $W = [-2, 2]$. We select an optimal bandwidth for $p = 2$ as recommended in Section 5.3, using the rule-of-thumb with $C(K) = 2.435$. The semi-definite program in Section 5.1 is solved with the MOSEK interior point optimizer (ApS, 2021) ensuring covariance estimates are positive semi-definite, and Gaussian vectors are resampled $B = 10,000$ times.

In Figure 2 we plot a typical outcome for each of the three degeneracy types (total, partial, none), using the Epanechnikov kernel of order $p = 2$, with sample size $n = 100$ (so $N = 4,950$) and with $d = 100$ equally-spaced evaluation points. Each plot contains the true density function f_W, the dyadic kernel density estimate \hat{f}_W and two different approximate 95% confidence bands for f_W. The first is the uniform confidence band (UCB) constructed using one of our main results in Theorem 5.1.
The second is a sequence of pointwise confidence intervals (PCI) constructed by finding a confidence interval for each evaluation point separately. We show only 10 pointwise confidence intervals for clarity. In general, the PCIs are too narrow as they fail to provide simultaneous (uniform) coverage over the evaluation points. Note that under partial degeneracy the confidence band narrows near the degenerate point \(w = 0 \).

![Graphs showing typical outcomes for three different values of the parameter \(\pi \).](image)

(a) Total degeneracy \(\pi = \left(\frac{1}{2}, 0, \frac{1}{2} \right) \)

(b) Partial degeneracy \(\pi = \left(\frac{1}{2}, 0, \frac{3}{4} \right) \)

(c) No degeneracy \(\pi = \left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} \right) \)

Figure 2: Typical outcomes for three different values of the parameter \(\pi \).

Notes. \(f_W(w) \): true density. \(\hat{f}_W(w) \): estimated density. UCB: uniform confidence band. PCI: pointwise confidence intervals. The nominal coverage rate is 95%.

Next, Table 1 presents numerical results. For each degeneracy type (total, partial, none) and each kernel order \((p = 2, p = 4)\), we run 2,000 repeats with sample size \(n = 500 \) (so \(N = 124,750 \)) and with \(d = 50 \) equally-spaced evaluation points. We record the average rule-of-thumb bandwidth \(\hat{h}_{\text{ROT}} \) and the average root integrated mean squared error (RIMSE). For both the uniform confidence bands (UCB) and the pointwise confidence intervals (PCI), we report the coverage rate (CR) and the average width (AW). The lower-order kernel \((p = 2)\) ignores the bias (IB), leading to good RIMSE performance and acceptable UCB coverage under partial or no degeneracy, but gives invalid inference under total degeneracy. In contrast, the higher-order kernel \((p = 4)\) provides robust bias correction (RBC) and hence improves the coverage of the UCB in every regime, particularly under total degeneracy, at the cost of increasing both the RIMSE and the average widths of the confidence bands. As expected, the pointwise (in \(w \in W \)) confidence intervals (PCIs) severely undercover in every regime. Thus our simulation results show that the proposed feasible inference methods based on robust bias correction and proper Studentization deliver valid uniform inference which is robust to unknown degenerate points in the underlying dyadic distribution.
Table 1: Numerical results for three values of the parameter π

<table>
<thead>
<tr>
<th>π</th>
<th>Degeneracy type</th>
<th>\tilde{h}_{ROT}</th>
<th>Method</th>
<th>RIMSE</th>
<th>UCB</th>
<th>PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\left(\frac{1}{2}, 0, \frac{1}{2}\right)$</td>
<td>Total</td>
<td>0.329</td>
<td>IB</td>
<td>0.0020</td>
<td>85.4%</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RBC</td>
<td>0.0029</td>
<td>93.5%</td>
<td>0.017</td>
</tr>
<tr>
<td>$\left(\frac{1}{4}, 0, \frac{3}{4}\right)$</td>
<td>Partial</td>
<td>0.324</td>
<td>IB</td>
<td>0.0058</td>
<td>93.7%</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RBC</td>
<td>0.0062</td>
<td>94.1%</td>
<td>0.034</td>
</tr>
<tr>
<td>$\left(\frac{1}{5}, \frac{1}{5}, \frac{3}{5}\right)$</td>
<td>None</td>
<td>0.296</td>
<td>IB</td>
<td>0.0051</td>
<td>93.0%</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RBC</td>
<td>0.0055</td>
<td>94.3%</td>
<td>0.033</td>
</tr>
</tbody>
</table>

Notes. IB: ignoring bias using a second-order kernel ($p = 2$). RBC: robust bias correction using a fourth-order kernel ($p = 4$). \tilde{h}_{ROT} corresponds to the rule-of-thumb bandwidth for a second-order kernel ($p = 2$).

7 Conclusion

We studied the uniform inference properties of the dyadic kernel density estimator $w \mapsto \hat{f}_W(w)$ given in (1), which forms a class of U-process-like estimators indexed by the n-varying kernel functions k_h on W. We established uniform minimax-optimal point estimation results and uniform distributional approximations for this estimator based on novel strong approximation strategies. We then applied these results to develop valid and feasible uniform confidence bands for the dyadic density estimand f_W, selecting an IMSE-optimal bandwidth and employing methods for robust bias correction. Numerical simulations confirmed our theoretical results. From a technical perspective, the appendices contain several generic results concerning strong approximation methods and maximal inequalities for empirical processes that may be of independent interest.

While our focus in this paper was on kernel density estimation with dyadic data, our results are readily applicable to other statistics that can be approximated by the U-process-like \hat{f}_W and ratios thereof. Examples include nonparametric regression estimation and two-step semiparametric estimation based on dyadic data. In research underway, we are employing our novel strong approximation methods developed in this paper to construct valid uniform inference procedures in those settings.

A Generic Strong Approximations

We present three generic technical results related to strong approximation, which may be of broader interest beyond their specific uses in this paper. Consequently, this appendix is purposely self-contained. Omitted proofs are given in the online supplemental appendix to streamline the presentation.
A.1 KMT Approximation

The following lemma presents a KMT approximation (Komlós et al., 1975) for a class of local empirical processes, building on earlier work by Giné et al. (2004) and Giné and Nickl (2010).

Lemma A.1 (KMT)

Let X_1, \ldots, X_n be i.i.d. real-valued random variables and $g_n : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be functions satisfying the total variation bound $\sup_{x \in \mathbb{R}} \|g_n(\cdot, x)\|_{\text{TV}} < \infty$. Then on some probability space there exist independent copies of X_1, \ldots, X_n denoted X'_1, \ldots, X'_n and a mean-zero Gaussian process $Z_n(x)$ such that for some universal positive constants C_1, C_2 and C_3 and for all $t > 0$,

$$\mathbb{P} \left(\sup_{x \in \mathbb{R}} \left| G_n(x) - Z_n(x) \right| > \sup_{x \in \mathbb{R}} \|g_n(\cdot, x)\|_{\text{TV}} \frac{t + C_1 \log n}{\sqrt{n}} \right) \leq C_2 e^{-C_3 t},$$

where

$$G_n(x) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(g_n(X'_i, x) - \mathbb{E}[g_n(X'_i, x)] \right).$$

Further, Z_n has the same covariance structure as G_n in the sense that for all $x, x' \in \mathbb{R}$,

$$\mathbb{E}[Z_n(x)Z_n(x')] = \mathbb{E}[G_n(x)G_n(x')].$$

By independently sampling from the law of Z_n conditional on X_1, \ldots, X_n, we can take Z_n to be a function only of X_1, \ldots, X_n and some independent random noise.

We use this lemma to obtain an unconditional strong approximation for $L_n(w)$ defined in (2).

A.2 Yurinskii Approximation

The following lemma presents a Yurinskii approximation (Yurinskii, 1978) for a class of local empirical processes, building on earlier work by Pollard (2002) and Belloni et al. (2019).

Lemma A.2 (Yurinskii)

Let X_1, \ldots, X_n be independent but not necessarily identically distributed (i.n.i.d.) random variables taking values in a measurable space (S, \mathcal{S}) and let $\mathcal{X}_n \subseteq \mathbb{R}$ be a compact interval. Let g_n be a measurable function on $S \times \mathcal{X}_n$ satisfying $\sup_{\xi \in S} \sup_{x \in \mathcal{X}_n} |g_n(\xi, x)| \leq M_n$ and the L^2 bound $\sup_{x \in \mathcal{X}_n} \max_{1 \leq i \leq n} \text{Var}[g_n(X_i, x)] \leq \sigma^2_n$. Suppose that g_n satisfies the uniform Lipschitz condition

$$\sup_{\xi \in S} \sup_{x, x' \in \mathcal{X}_n} \left| \frac{g_n(\xi, x) - g_n(\xi, x')}{x - x'} \right| \leq l_n, \infty$$

and also the L^2 Lipschitz condition

$$\sup_{x, x' \in \mathcal{X}_n} \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} \left| \frac{g_n(X_i, x) - g_n(X_i, x')}{x - x'} \right| \right]^{1/2} \leq l_{n,2}.$$
Then there exists a probability space carrying independent copies of X_1, \ldots, X_n denoted X'_1, \ldots, X'_n and a mean-zero Gaussian process $Z_n(x)$ such that for all $t > 0$,

$$
\mathbb{P} \left(\sup_{x \in X_n} |G_n(x) - Z_n(x)| > t \right) \leq \frac{C_1 \sigma_n \sqrt{\text{Leb}(X_n) \sqrt{\log n} \sqrt{M_n + \sigma_n \sqrt{\log n}}}}{n^{1/4} t^2} \sqrt{l_{n,2} \sqrt{\log \frac{l_{n,\infty}}{l_{n,2}}} + \log n + \frac{l_{n,\infty} \sqrt{\log n}}{\sqrt{n}} \left(\log \frac{l_{n,\infty}}{l_{n,2}} + \log n \right)},
$$

where $C_1 > 0$ is a universal constant and

$$
G_n(x) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(g_n(X'_i, x) - \mathbb{E}[g_n(X'_i, x)] \right).
$$

Further, Z_n has the same covariance structure as G_n in the sense that for all $x, x' \in X_n$,

$$
\mathbb{E}[Z_n(x)Z_n(x')] = \mathbb{E}[G_n(x)G_n(x')].
$$

We use this lemma to construct a conditional (on A_n) strong approximation for $E_n(w)$ defined in (2).

A.3 Vorob’ev-Berkes-Philipp Theorem

Finally, we present a generalization of the Vorob’ev-Berkes-Philipp theorem (Dudley, 1999), which allows one to “glue” multiple random variables or stochastic processes onto the same probability space, while preserving some pairwise distributions. For our purposes, this result will allow us to obtain a joint strong approximation for $L_n(w)$ and $E_n(w)$.

We begin by giving some definitions.

Definition A.1 (Tree)

A tree is an undirected graph with finitely many vertices which is connected and contains no cycles or self-loops.

Definition A.2 (Polish Borel probability space)

A Polish Borel probability space is a triple $(\mathcal{X}, \mathcal{F}, \mathbb{P})$, where \mathcal{X} is a Polish space (a topological space metrizable by a complete separable metric), \mathcal{F} is the Borel σ-algebra induced on \mathcal{X} by its topology, and \mathbb{P} is a probability measure on $(\mathcal{X}, \mathcal{F})$.

Important examples of Polish spaces include \mathbb{R}^d and the Skorokhod space $\mathcal{D}[0,1]^d$ for some $d \geq 1$. In particular, one can consider vectors of real-valued random variables or stochastic processes indexed by compact subsets of \mathbb{R}^d which have almost surely continuous trajectories.

Definition A.3 (Projection of a law)

Let $(\mathcal{X}_1, \mathcal{F}_1)$ and $(\mathcal{X}_2, \mathcal{F}_2)$ be measurable spaces, and let \mathbb{P}_{12} be a law on $(\mathcal{X}_1 \times \mathcal{X}_2, \mathcal{F}_1 \otimes \mathcal{F}_2)$. The
projection of \mathbb{P}_{12} onto X_1 is the law \mathbb{P}_1 defined on (X_1, \mathcal{F}_1) by $\mathbb{P}_1 = \mathbb{P}_{12} \circ \pi_1^{-1}$ where $\pi_1(x_1, x_2) = x_1$ is the first coordinate projection.

Lemma A.3 (Vorob’ev-Berkes-Philipp theorem, tree form)
Let \mathcal{T} be a tree with vertex set $\mathcal{V} = \{1, \ldots, n\}$ and edge set \mathcal{E}. Suppose that attached to each vertex i is a Polish Borel probability space $(X_i, \mathcal{F}_i, \mathbb{P}_i)$. Suppose that attached to each edge $(i, j) \in \mathcal{E}$ (where $i < j$ without loss of generality) is a law \mathbb{P}_{ij} on $(X_i \times X_j, \mathcal{F}_i \otimes \mathcal{F}_j)$. Assume that these laws are pairwise-consistent in the sense that the projection of \mathbb{P}_{ij} onto X_i (resp. X_j) is \mathbb{P}_i (resp. \mathbb{P}_j) for each $(i, j) \in \mathcal{E}$. Then there exists a law \mathbb{P} on

$$\left(\prod_{i=1}^{n} X_i, \bigotimes_{i=1}^{n} \mathcal{F}_i \right)$$

such that the projection of \mathbb{P} onto $X_i \times X_j$ is \mathbb{P}_{ij} for each $(i, j) \in \mathcal{E}$, and therefore also the projection of \mathbb{P} onto X_i is \mathbb{P}_i for each $i \in \mathcal{V}$.

Remark. The requirement that \mathcal{T} must contain no cycles is necessary in general. To see this, consider the Polish Borel probability spaces given by $X_1 = X_2 = X_3 = \{0, 1\}$, their respective Borel σ-algebras, and the pairwise-consistent probability measures:

$$\frac{1}{2} = \mathbb{P}_1(0) = \mathbb{P}_2(0) = \mathbb{P}_3(0),$$
$$\frac{1}{2} = \mathbb{P}_{12}(0, 1) = \mathbb{P}_{12}(1, 0) = \mathbb{P}_{13}(0, 1) = \mathbb{P}_{13}(1, 0) = \mathbb{P}_{23}(0, 1) = \mathbb{P}_{23}(1, 0).$$

That is, each measure \mathbb{P}_i places equal mass on 0 and 1, while \mathbb{P}_{ij} asserts that each pair of realizations is a.s. not equal. The graph of these laws forms a triangle, which is not a tree. Suppose that (X_1, X_2, X_3) has distribution given by \mathbb{P}, where $X_i \sim \mathbb{P}_i$ and $(X_i, X_j) \sim \mathbb{P}_{ij}$ for each i, j. But then by definition of \mathbb{P}_{ij} we have $X_1 = 1 - X_2 = X_3 = 1 - X_1$ a.s., which is a contradiction.

B Maximal Inequalities for i.n.i.d. Empirical Processes

Firstly we provide a maximal inequality for empirical processes of independent but not necessarily identically distributed (i.n.i.d.) random variables, indexed by a class of functions. This result is an extension of Theorem 5.2 from Chernozhukov et al. (2014b), which only covers i.i.d. random variables, and is proven in the same manner. Such a result is useful in the study of dyadic data because when conditioning on latent variables, we may encounter random variables that are conditionally independent but do not necessarily follow the same conditional distribution. See the online supplemental appendix for omitted proofs.

Lemma B.1 (A maximal inequality for i.n.i.d. empirical processes)
Let X_1, \ldots, X_n be independent but not necessarily identically distributed (i.n.i.d.) random variables taking values in a measurable space (S, \mathcal{S}). Denote the joint distribution of X_1, \ldots, X_n by \mathbb{P} and the marginal distribution of X_i by \mathbb{P}_i, and let $\overline{\mathbb{P}} = n^{-1} \sum_i \mathbb{P}_i$. Let \mathcal{F} be a class of Borel measurable
functions from S to R which is pointwise measurable (i.e. it contains a countable subclass which is dense under pointwise convergence). Let F be a strictly positive measurable envelope function for F (i.e. $|g(s)| \leq |g(s)|$ for all $g \in F$ and $s \in S$). For a distribution Q and some $q \geq 1$, define the (Q,q)-norm of $g \in F$ as $\|g\|_{Q,q}^q = E_{X \sim Q}[g(X)^q]$ and suppose that $\|F\|_{\bar{P},2} < \infty$. For $g \in F$ define the empirical process

$$G_n(g) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(g(X_i) - E[g(X_i)] \right).$$

Let $\sigma > 0$ satisfy $\sup_{g \in F} \|g\|_{\bar{P},2} \leq \sigma \leq \|F\|_{\bar{P},2}$, and define $M = \max_{1 \leq i \leq n} F(X_i)$. Then with $\delta = \frac{\sigma}{\|F\|_{\bar{P},2}} \in (0,1]$,

$$\mathbb{E} \left[\sup_{g \in F} \left| G_n(g) \right| \right] \lesssim \|F\|_{\bar{P},2} \frac{J(\delta, F, F)}{\delta^2 \sqrt{n}},$$

where \lesssim is up to a universal constant, and $J(\delta, F, F)$ is the covering entropy integral

$$J(\delta, F, F) = \int_0^\delta \sqrt{1 + \sup_Q \log N(F, \rho_Q, \varepsilon \|F\|_{Q,2})} \, d\varepsilon,$$

with the supremum taken over finite discrete probability measures Q on (S,S).

Lemma B.2 (A VC-type class maximal inequality for i.n.i.d. empirical processes)

Assume the same setup as in Lemma B.1, and suppose further that F forms a VC-type class, i.e.,

$$\sup_Q N(F, \rho_Q, \varepsilon \|F\|_{Q,2}) \leq (C_1/\varepsilon)^{C_2}$$

for all $\varepsilon \in (0,1]$, for some constants $C_1 \geq e$ (where e is the standard exponential constant) and $C_2 \geq 1$. Then for $\delta \in (0,1]$, we have the covering entropy integral bound

$$J(\delta, F, F) \leq 3\delta \sqrt{C_2 \log(C_1/\delta)},$$

and thus by Lemma B.1,

$$\mathbb{E} \left[\sup_{g \in F} \left| G_n(g) \right| \right] \lesssim \sigma \sqrt{C_2 \log(C_1/\delta)} + \frac{\|M\|_{\bar{P},2} C_2 \log(C_1/\delta)}{\sqrt{n}} \lesssim \sigma \sqrt{C_2 \log(C_1\|F\|_{\bar{P},2}/\sigma)} + \frac{\|M\|_{\bar{P},2} C_2 \log(C_1\|F\|_{\bar{P},2}/\sigma)}{\sqrt{n}}.$$
with supporting lemmas are available in the online supplemental appendix.

Proof (Lemma 2.1)
For the bias of \hat{f}_W, begin by defining

$$P_p(s, w) = \sum_{r=0}^{p} \frac{f_W^{(r)}(w)}{r!} (s - w)^r$$

for $s, w \in \mathcal{W}$ as the degree-p Taylor polynomial of f_W. Then exploiting the moment conditions on the kernel and the Hölder-smoothness of f_W gives

$$\sup_{w \in \mathcal{W}} |\mathbb{E}[\hat{f}_W(w)] - f_W(w)| = \sup_{w \in \mathcal{W}} \left| \int_{\mathcal{W}} k_h(s, w)(f_W(s) - P_{p \wedge \beta}(s, w)) \, ds \right| + O(h^p) \lesssim h^{p \wedge \beta}.$$

For the variance terms, consider the following function classes:

- $\mathcal{F}_1 = \left\{ W_{ij} \mapsto k_h(W_{ij}, w) : w \in \mathcal{W} \right\}$,
- $\mathcal{F}_2 = \left\{ (A_i, A_j) \mapsto \mathbb{E}[k_h(W_{ij}, w) \mid A_i, A_j] : w \in \mathcal{W} \right\}$,
- $\mathcal{F}_3 = \left\{ A_i \mapsto \mathbb{E}[k_h(W_{ij}, w) \mid A_i] : w \in \mathcal{W} \right\}$.

Since the kernel k_h is C_k/h^2-Lipschitz and bounded by C_k/h, we have the covering number bound

$$\sup_{\mathcal{Q}} N(\mathcal{F}_1, \rho_{\mathcal{Q}}, \varepsilon C_k/h) \leq (C_1/(h \varepsilon))^{C_2}$$

for all $\varepsilon \in (0, 1]$ where $C_1 \geq e$ and $C_2 \geq 1$ are constants. Here, \mathcal{Q} ranges over Borel probability measures on \mathcal{W} and $\rho_{\mathcal{Q}}$ is the natural semimetric induced by \mathcal{Q}. Next, by Lipschitzness of $f_W|_{AA}$, we have that \mathcal{F}_2 and \mathcal{F}_3 are uniformly bounded and smoothly parametrized by w and so

$$\sup_{\mathcal{Q}} N(\mathcal{F}_2, \rho_{\mathcal{Q}}, \varepsilon C_4) \leq (C_1/\varepsilon)^{C_2}, \quad \sup_{\mathcal{Q}} N(\mathcal{F}_3, \rho_{\mathcal{Q}}, \varepsilon C_4) \leq (C_1/\varepsilon)^{C_2}.$$

The bound for L_n now follows by applying Lemma B.2 to the i.i.d. variables A_i over the class \mathcal{F}_3. The bound for the U-process Q_n follows by applying Corollary 5.3 from Chen and Kato (2020) to the i.i.d. variables A_i over the class \mathcal{F}_2. Finally, E_n is bounded by conditionally applying Lemma B.2 to the conditionally i.n.i.d. variables W_{ij} over the class \mathcal{F}_1. \Box

Proof (Lemma 2.2)
It is easily checked that by the dyadic structure of the data,

$$\Sigma_n(w, w) = \frac{2}{n(n-1)} \text{Var}[k_h(W_{ij}, w)] + \frac{4(n-2)}{n(n-1)} \text{Var}[\mathbb{E}[k_h(W_{ij}, w) \mid A_i]].$$
By Lipschitzness of $f_W|A$ and boundedness of the kernel, we have that uniformly in $w \in W$,

$$
|E[k_h(W_{ij}, w) \mid A_i] - f_W|A(w \mid A_i)| = \left| \int_W k_h(s, w) (f_W|A(s \mid A_i) - f_W|A(w \mid A_i)) \, ds \right| \lesssim h.
$$

By boundedness of $f_W|A$, taking the variance gives that uniformly over $w \in W$,

$$
D_w^2 \lesssim \text{Var} \left[E[k_h(W_{ij}, w) \mid A_i] \right] \lesssim D_{up}^2.
$$

For the other term, boundedness of the kernel and Jensen’s integral inequality show that

$$
\frac{1}{\sqrt{h}} \inf_{w \in W} f_W(w) \lesssim \text{Var} \left[k_h(W_{ij}, w) \right] \lesssim \frac{1}{h}.
$$

\[\square \]

Proof (Theorem 3.2)

Firstly, we show the lower bound for P. Without loss of generality take $W = [-1, 1]$ and $C_H \leq 1/2$. For $\theta \in [1/2, 1]$ let $A_i \sim \text{Ber}(\theta)$ and $f_V(v) = \frac{1}{2} + C_H v$ on $[-1, 1]$. Let $W_{ij} = (2A_iA_j - 1)V_{ij}$ so that $f_W(w) = \frac{1}{2} + (2\theta^2 - 1)C_H w$. This distribution satisfies Assumption 2.1 so is in P. By the Neyman-Pearson lemma, $1/\sqrt{n}$ is a lower bound for the error in estimating θ using A_i. Since V_{ij} contains no information about θ, we therefore have that $1/\sqrt{n}$ is a lower bound also for uniformly estimating f_W in P.

Now we show the lower bound for P_d. Consider the totally degenerate distributions given by W_{ij} i.i.d. with $f_W \in \mathcal{H}^{1/2}_{C_H}(W)$. By the main theorem in Khasminskii (1978) with $\frac{1}{2}n(n - 1)$ samples, $(\log n/n^2)^{1/4} = 1$ is a lower bound for uniform estimation of f_W in P_d.

The upper bounds for P and P_d follow from Theorem 3.1, using a dyadic kernel density estimator with an optimal bandwidth and noting that all inequalities hold uniformly over P and P_d. \[\square \]

Proof (Lemma 4.1)

The strong approximation follows directly from Lemma A.1 applied to the variables $X_i = A_i$ and the functions $g_n(a, w) = 2E[k_h(W_{ij}, w) \mid A_i = a]$. These are of bounded variation since

\[
\sup_{w \in W} \| g_n(\cdot, w) \|_{TV} \leq 4C_k \sup_{w \in W} \| f_W|A(w \mid \cdot) \|_{TV} < \infty.
\]

Thus by Lemma A.1,

\[
\mathbb{P} \left(\sup_{w \in W} \sqrt{n} L_n(w) - Z_n^L(w) > D_{up} \frac{t + C_1 \log n}{\sqrt{n}} \right) \leq C_2 e^{-C_3 t}
\]

for some constants C_1, C_2, C_3, where D_{up} was inserted as $D_{up} = 0$ implies $L_n \equiv 0$. The expectation bound is deduced by integrating tail probabilities. The trajectory regularity of Z_n^L follows by chaining for Gaussian processes, e.g. Corollary 2.2.8 in van der Vaart and Wellner (1996). \[\square \]

Proof (Lemma 4.2)

When conditioning on A_n, we have that $W_{ij} = W(A_i, A_j, V_{ij})$ is a function of V_{ij} only. Thus by mutual independence of A_i and V_{ij}, the observations W_{ij} are i.n.i.d. The strong approximation follows by applying Lemma A.2 to the functions $g_n(\cdot, \cdot) = k_h(\cdot, \cdot)$ indexed on $X_n = W$, with the $\frac{1}{2}n(n - 1)$
variables W_{ij}, conditionally on A_n. Note that by the boundedness and compact support properties of k_h we have $\sup_{s,w\in W} |k_h(s,w)| \lesssim M_n = n^{-1}$ and $\sup_{w\in W} \mathbb{E} [k_h(W_{ij}, w)^2 \mid A_n] \lesssim \sigma_n^2 = n^{-1}$. Also by the Lipschitz property of the kernel we have $\sup_{s,w,w'\in W} |k_h(s,w) - k_h(s,w')|/|w-w'| \lesssim l_{n,\infty} = n^{-2}$ and $\sup_{w,w'\in W} \mathbb{E} [|k_h(W_{ij}, w) - k_h(W_{ij}, w')|^2 \mid A_n]^{1/2} / |w-w'| \lesssim l_{n,2} = n^{-3/2}$. Thus by Lemma A.2,

$$\mathbb{P} \left(\sup_{w\in W} \left| \sqrt{n^2 h n E_n(w)} - \bar{Z}_n^E(w) \right| > t \mid A_n \right) \lesssim n^{-1/2} h^{-3/4} (\log n)^{3/4} t^{-2}.$$

Taking an expectation and integrating tail probabilities yields the desired strong approximation. The trajectory regularity of \bar{Z}_n^E follows by conditionally applying Corollary 2.2.8 in van der Vaart and Wellner (1996) and taking a marginal expectation.

Proof (Lemma 4.3)

Let $W_d = \{w_1, \ldots, w_d\} \subseteq W$ be an equally-spaced partition. Define for $w, w' \in W_d$ the positive semi-definite matrices $\Sigma_n^E(w, w') = \mathbb{E} [\bar{Z}_n^E(w) \bar{Z}_n^E(w') \mid A_n]$ and $\Sigma_n(w, w') = \mathbb{E} [\Sigma_n^E(w, w')]$. Let $N_d \sim \mathcal{N}(0, I_d)$ be independent of A_n and define $\bar{Z}_n^E = (\Sigma_n^E)^{1/2} N_d$, and $Z_n^E = (\Sigma_n^E)^{1/2} N_d$. so that by a Gaussian maximal inequality

$$\mathbb{E} \left[\max_{w\in W_d} \left| \bar{Z}_n^E(w) - Z_n^E(w) \right| \right] \lesssim \sqrt{\log d} \mathbb{E} \left[\left\| \Sigma_n^E - \Sigma_n \right\|_2^{1/2} \right].$$

We note that Σ_n^E is a band-diagonal matrix-valued U-statistic of order two, and write its Hoeffding decomposition as $\Sigma_n^E = \bar{L} + \bar{Q}$. The matrix Bernstein inequality establishes that $\mathbb{E} [\left\| \bar{L} \right\|_2] \lesssim (hd + 1) \sqrt{\log n/n}$, and the matrix U-statistic results from Minsker and Wei (2019) give that $\mathbb{E} [\left\| \bar{Q} \right\|_2] \lesssim (hd + 1) (\log n)^{3/2}/n$.

By Lemma A.3, Z_n^E extends to a Gaussian process on W. The trajectory regularity of Z_n^E then follows from Corollary 2.2.8 in van der Vaart and Wellner (1996), and the final bound is obtained through an appropriate choice of the discretization parameter d.

Proof (Theorem 4.1)

We first use the tree form of the Vorob’ev-Berkes-Philipp theorem from Lemma A.3 to carefully glue together the strong approximations from Lemmas 4.1, 4.2 and 4.3. In particular, consider the following tree of distributions:

$$Z_n^L \leftrightarrow (A_n, V_n, L_n, E_n) \leftrightarrow \bar{Z}_n^E \leftrightarrow Z_n^E.$$

The pairwise joint distributions, indicated by the arrows, are specified as follows: the first is from the strong approximation of L_n, the second is from the conditional strong approximation of E_n and the third is from the unconditional strong approximation of E_n. Thus since all the variables are either random vectors or compactly supported stochastic processes with continuous trajectories, by Lemma A.3 they can all be placed on the same probability space while preserving the aforementioned pairwise distributions. Note that Z_n^L and Z_n^E can be assumed independent since Z_n^L depends only on A_n and some independent random noise, while Z_n^E is independent of A_n. Therefore Z_n^L and Z_n^E
are jointly Gaussian. Define the strong approximation for \hat{f}_W by

$$Z_n^T(w) = \frac{1}{\sqrt{n}}Z_n^L(w) + \frac{1}{n}Z_n^Q(w) + \frac{1}{\sqrt{n^2+1}}Z_n^E(w),$$

where Z_n^Q is a mean-zero Gaussian process independent of everything else and with the same covariance structure as nQ_n. It is straightforward to show using a Gaussian process maximal inequality that Z_n^Q/n is negligible. Let $Z_n^T(w) = Z_n^L(w)/\Sigma_n(w, w)^{1/2}$. The numerator of $T_n(w) - Z_n^T(w)$ is then $\hat{f}_W(w) - \mathbb{E}[\hat{f}_W(w)] - Z_n^T(w)$ and is bounded above by Lemmas 2.1, 4.1, 4.2 and 4.3, while the denominator $\Sigma_n(w, w)^{1/2}$ is bounded below by Lemma 2.2, yielding the result.

Proof (Theorem 4.2)

We first establish a trajectory regularity property for Z_n^T, and then apply an anti-concentration result for Gaussian processes given as Corollary 2.1 in Chernozhukov et al. (2014a) to deduce that

$$\sup_{t \in \mathbb{R}} \mathbb{P} \left(\left| \sup_{w \in \mathcal{W}} |Z_n^T(w)| - t \right| \leq \varepsilon \right) \leq K \varepsilon \log n. $$

This implies that all quantiles of $\sup_{w \in \mathcal{W}} |Z_n^T(w)|$ exist, and hence $q_{1-\alpha}$ is well-defined. Combining this anti-concentration result with Theorem 4.1 and Lemma 2.2 shows that the proposed infeasible uniform confidence band is valid as claimed.

Proof (Lemma 5.1)

We split $\hat{\Sigma}_n - \Sigma_n$ into three terms and bound them separately, uniformly over $w, w' \in \mathcal{W}$. The first term depends on $\hat{f}_W(w)\hat{f}_W(w')$. This is bounded by applying the variance bounds from Lemma 2.1 and the maximal inequality from Lemma B.2, while observing that the denominator $\sqrt{\Sigma_n(w, w) + \Sigma_n(w', w')}$ dominates the standard deviations of both $\hat{f}_W(w)$ and $\hat{f}_W(w')$.

The second term involves summands of the form $k_h(W_{ij}, w)k_h(W_{ir}, w')$ where $j \neq r$. This is bounded by first conditioning on A_n and using a concentration inequality for third-order U-statistics from Theorem 2 in Arcones (1995). The remainder is then controlled with a corollary of the U-statistic concentration inequality given in Theorem 3.3 in Giné et al. (2000).

The third term involves summands of the form $k_h(W_{ij}, w)k_h(W_{ij}, w')$, which are independent conditional on A_n. Thus Bernstein’s inequality can be applied conditionally to bound this term.

For consistency of $\hat{\Sigma}^+_n$, we first show that the positive-semidefinite function Σ_n is feasible for the optimization problem (4). Consistency of $\hat{\Sigma}_n$ along with the triangle inequality then shows that $\hat{\Sigma}^+_n$ is also consistent with the same rate of convergence.

Proof (Theorem 5.1)

Firstly we use Lemmas 2.1, 2.2 and 5.1 to obtain a bound in probability for $\sup_{w \in \mathcal{W}} |\tilde{T}(w) - T_n(w)|$, controlling the feasible t-statistic process. Then we use the Gaussian-Gaussian comparison result from Lemma 3.1 in Chernozhukov et al. (2013) and the anti-concentration result for Gaussian processes given as Corollary 2.1 in Chernozhukov et al. (2014a) to bound the Kolmogorov-Smirnov quantity

$$\sup_{t \in \mathbb{R}} \mathbb{P} \left(\sup_{w \in \mathcal{W}} |\tilde{Z}_n^T(w)| \leq t \right) - \mathbb{P} \left(\sup_{w \in \mathcal{W}} |Z_n^T(w)| \leq t \right).$$
thus controlling the feasible Gaussian process. Finally we use the infeasible uniform confidence band result from Theorem 4.1 to control the coverage rate error by bounding

\[
\sup_{t \in \mathbb{R}} \left[\mathbb{P} \left(\sup_{w \in W} \left| \tilde{Z}_{n}^{T}(w) \right| \leq t \right| W_n \right) - \mathbb{P} \left(\sup_{w \in W} \left| \tilde{T}_{n}(w) \right| \leq t \right) \right].
\]

\[\square\]

Acknowledgments

We thank Jianqing Fan, Jason Klusowski and Ricardo Masini for useful comments. The first author was supported through National Science Foundation grant SES-1947805.

References

